检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李啸林 章红艳[1,2] 许佳钰 许力[1,2] 黄赞 LI Xiao-Lin;ZHANG Hong-Yan;XU Jia-Yu;XU Li;HUANG Zan(School of Computer and Cyber Security,Fujian Normal University,Fuzhou 350007,China;Fujian Provincial Key Lab of Network Security&Cryptology,Fujian Normal University,Fuzhou 350007,China;Key Laboratory of Wireless Communication in Fujian Province,Fuzhou 350002,China)
机构地区:[1]福建师范大学计算机与网络空间安全学院,福州350007 [2]福建师范大学福建省网络安全与密码技术重点实验室,福州350007 [3]福建省无线通讯重点实验室,福州350002
出 处:《计算机系统应用》2022年第11期21-30,共10页Computer Systems & Applications
基 金:国家自然科学基金(U1905211,61771140,62171132);福建省科技项目(2021L3032);企事业合作项目(DH-1565)
摘 要:利用传统的k匿名技术在社会网络中进行隐私保护时会存在聚类准则单一、图中数据信息利用不足等问题.针对该问题,提出了一种利用Kullback-Leibler(KL)散度衡量节点1-邻居图相似性的匿名技术(anonymization techniques for measuring the similarity of node 1-neighbor graph based on Kullback-Leibler divergence,SNKL).根据节点1-邻居图分布的相似性对原始图节点集进行划分,按照划分好的类进行图修改,使修改后的图满足k匿名,完成图的匿名发布.实验结果表明,SNKL方法与HIGA方法相比在聚类系数上的改变量平均降低了17.3%,同时生成的匿名图与原始图重要性节点重合度保持在95%以上.所提方法在有效保证隐私的基础上,可以显著的降低对原始图结构信息的改变.Using traditional k-anonymization techniques to achieve privacy protection in social networks is faced with problems such as single clustering criterion and under-utilization of data and information in the graph.To solve this problem,this study proposes an anonymization technique measuring the similarity of the node 1-neighbor graph based on the Kullback-Leibler divergence(SNKL).The original graph node set is divided according to the similarity of node 1-neighbor graph distribution,and the graph is modified according to the divided classes so that the modified graph satisfies k-anonymity.On this basis,the anonymous release of the graph is implemented.The experimental results show that compared with the HIGA method,the SNKL method reduces the amount of change in the clustering coefficients by17.3%on average.Moreover,the overlap ratio between the importance nodes of the generated anonymous graph and those of the original graph is maintained at more than 95%.In addition to protecting privacy effectively,the proposed method can significantly reduce the changes brought to the structural information in the original graph.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.227.92