检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xue Chen Jing-Jie Cao He-Long Yang Shao-Jian Shi Yong-Shuai Guo
机构地区:[1]Hebei Key Laboratory of Strategic Critical Mineral Resources,Hebei GEO University,Shijiazhuang,Hebei 050031,China [2]Hebei Nautral Resources Archives,Shijiazhuang,Hebei 050037,China [3]The Third Hydrogeological Engineering Geological Brigade,Hengshui,Hebei 053000,China
出 处:《Petroleum Science》2022年第2期534-542,共9页石油科学(英文版)
基 金:supported by National Natural Science Foundation of China(41974166);Natural Science Foundation of Hebei Province(D2019403082,D2021403010);Hebei Province“three-threethree talent project”(A202005009);Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106)
摘 要:Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.
关 键 词:Diffraction separation Common-offset domain Diffraction imaging High-resolution linear Radon transform Curvelet transform Sparse inversion
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] O436.1[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.8.36