Effect of nanoparticles on the nucleation and agglomeration rates of hydrate growth using THF-water clathrates  被引量:1

Effect of nanoparticles on the nucleation and agglomeration rates of hydrate growth using THF-water clathrates

在线阅读下载全文

作  者:Syed Y.Nahri James L.Nielsen Yuanhang Chen 

机构地区:[1]Craft and Hawkins Department of Petroleum Engineering,Louisiana State University,Baton Rouge,LA 70803,USA

出  处:《Petroleum Science》2020年第2期467-476,共10页石油科学(英文版)

摘  要:Four types of nanoparticles,amorphous carbon,ironⅢoxide,SiO2,and amino-coated SiO2,were tested to determine changes in tetrahydrofuran-water(THF-water)clathrate hydrate nucleation and agglomeration.Rates were experimentally found to determine their viability for preventing natural gas hydrates from developing during offshore drilling operations.THF-water clathrates were chosen as a model to represent gas hydrate growth at atmospheric pressure.Concentrations of each nanoparticle between 0.15%and 1.0%by weight were tested as a kinetic inhibitor to hydrate formation.Tests were repeated at various temperatures below the formation temperature of 4.4℃for THF-water clathrate hydrates.Measurements were made to identify how the concentration of THF affects the clathrate hydrates forming under static conditions between20%and 30%by mole of THF.The primary tests in this study were performed using a 20:80 THF/water ratio.Temperature increases during hydrate nucleation for THF-water were measured between-5 and 3℃.The range of ideal nanoparticle concentrations was found to be between 0.15%and 0.45%by weight for optimal static,kinetic inhibition of hydrate nucleation.At approximately 0.3%by weight,the most significant inhibition was observed under static conditions for all four types of nanoparticles tested.We found that functionalized amino-coated SiO2 nanoparticles,across all tests,significantly increased the time required for the formation of THF-water clathrate hydrates compared to the other three non-functionalized nanoparticles.The amorphous carbon and ironⅢoxide nanoparticles performed similarly across each test and were both the least effective in their inhibition of the clathrate hydrates of the four nanoparticles studied compared to a control.Four types of nanoparticles,amorphous carbon,iron Ⅲ oxide,SiO2,and amino-coated SiO2,were tested to determine changes in tetrahydrofuran-water(THF-water) clathrate hydrate nucleation and agglomeration.Rates were experimentally found to determine their viability for preventing natural gas hydrates from developing during offshore drilling operations.THF-water clathrates were chosen as a model to represent gas hydrate growth at atmospheric pressure.Concentrations of each nanoparticle between 0.15% and 1.0% by weight were tested as a kinetic inhibitor to hydrate formation.Tests were repeated at various temperatures below the formation temperature of 4.4℃for THF-water clathrate hydrates.Measurements were made to identify how the concentration of THF affects the clathrate hydrates forming under static conditions between20% and 30% by mole of THF.The primary tests in this study were performed using a 20:80 THF/water ratio.Temperature increases during hydrate nucleation for THF-water were measured between-5 and 3℃.The range of ideal nanoparticle concentrations was found to be between 0.15% and 0.45% by weight for optimal static,kinetic inhibition of hydrate nucleation.At approximately 0.3% by weight,the most significant inhibition was observed under static conditions for all four types of nanoparticles tested.We found that functionalized amino-coated SiO2 nanoparticles,across all tests,significantly increased the time required for the formation of THF-water clathrate hydrates compared to the other three non-functionalized nanoparticles.The amorphous carbon and iron Ⅲ oxide nanoparticles performed similarly across each test and were both the least effective in their inhibition of the clathrate hydrates of the four nanoparticles studied compared to a control.

关 键 词:NANOPARTICLES Gas HYDRATES CLATHRATES HYDRATE inhibition Functionalized NANOPARTICLES 

分 类 号:TE52[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象