Limits of One-dimensional Interacting Particle Systems with Two-scale Interaction  

在线阅读下载全文

作  者:Tong ZHAO 

机构地区:[1]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Chinese Annals of Mathematics,Series B》2022年第2期195-208,共14页数学年刊(B辑英文版)

摘  要:This paper characterizes the limits of a large system of interacting particles distributed on the real line.The interaction occurring among neighbors involves two kinds of independent actions with different rates.This system is a generalization of the voter process,of which each particle is of type A or a.Under suitable scaling,the local proportion functions of A particles converge to continuous functions which solve a class of stochastic partial differential equations driven by Fisher-Wright white noise.To obtain the convergence,the tightness of these functions is derived from the moment estimate method.

关 键 词:Interacting particle systems Stochastic partial differential equations Two-scale interaction TIGHTNESS 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象