中国内陆水体鱼类多样性监测专项网的监测和研究进展  被引量:1

Progress of monitoring and research of China Inland Water Fish Biodiversity Observation Network

在线阅读下载全文

作  者:高欣[1,5] 赵亚辉 田菲[3] 王晓爱[4] 黎明政[1,5] 林鹏程[1,5] 常涛 俞丹[1,5] 刘焕章 Xin Gao;Yahui Zhao;Fei Tian;Xiaoai Wang;Mingzheng Li;Pengcheng Lin;Tao Chang;DanYu;Huanzhang Liu(Key Laboratory of Aquatic Biodiversity and Conservation,Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072;Key Laboratory of Zoological Systematics and Evolution,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101;Key Laboratory of Adaptation and Evolution of Plateau Biota,Northwest Institute of Plateau Biology,Chinese Academy of Sciences,Xining 810008;State Key Laboratory of Genetic Resources and Evolution,Kunming Institute of Zoology,Chinese Academy of Sciences,Kunming 650201;University of Chinese Academy of Sciences,Beijing 100049)

机构地区:[1]中国科学院水生生物研究所中国科学院水生生物多样性与保护重点实验室,武汉430072 [2]中国科学院动物研究所中国科学院动物进化与系统学重点实验室,北京100101 [3]中国科学院西北高原生物研究所中国科学院高原生物适应与进化重点实验室,西宁810008 [4]中国科学院昆明动物研究所遗传资源与进化国家重点实验室,昆明650201 [5]中国科学院大学,北京100049

出  处:《生物多样性》2023年第12期199-210,共12页Biodiversity Science

基  金:中国生物多样性监测与研究网络-内陆水体鱼类多样性监测网资助

摘  要:内陆水体鱼类多样性监测专项网(简称鱼类监测网)是我国建立的第一个全国范围的内陆水体鱼类多样性监测网络。本文阐述了鱼类监测网的监测工作和研究进展,提出了对鱼类多样性监测和研究工作的展望和建议。鱼类监测网在长江、黄河、澜沧江、怒江、塔里木河、青海湖、黑龙江和珠江等八大水系开展了鱼类早期资源、个体生物学、种群和群落的监测和研究,建立了我国第一个全国性的内陆鱼类多样性数据库,收集和保藏鱼类样本上万尾和重要流域1997-2022年的鱼类多样性数据。主要研究结果显示,过度捕捞、水利水电工程建设和外来物种入侵等导致重要流域鱼类群落结构发生了稳态变化;中华鲟(Acipensersinensis)繁殖主要受到水温和流量的影响,长江干流大型水利水电工程造成下泄水温滞后和流量减小,严重影响中华鲟的繁殖活动,导致其野生种群数量急剧减少,物种极度濒危;长江四大家鱼呈现2000年前后减少,近期资源增加的格局,水温和流量日变化是影响四大家鱼繁殖的主要环境因素,放流亲鱼对四大家鱼资源恢复有重要作用;获得了圆口铜鱼(Coreius guichenoti)、长鳍吻鮈(Rhinogobio ventralis)、岩原鲤(Procypris rabaudi)等11种特有鱼类的生长、食性、繁殖特征等基础生物学数据。监测网的监测数据和研究结果为三峡工程生态影响评估、长江十年禁渔、赤水河生态环境保护、中华鲟物种保护等重要国家任务的完成和政策制定提供了数据基础和科学依据。为了完善全国性的监测网络建设,建议加大投入,建设观测台站;推动数据共享和区域合作;开展新技术、新方法的研究和应用。Background&Aims:There are 1,591 fish species in China’s inland waters,which accounts for 10%of the inland water fish species in the world.However,the development of the fish diversity monitoring in China’s inland water has still lagged and the long-term continuous and comprehensive monitoring networks and platforms has been scared.The China inland water fish biodiversity observation network(CIWF-BON)is the first nationwide network built for monitoring fish diversity of the inland waters in China.The purpose of this paper is to give a thorough overview of the achievement and to highlight the operations and duties of CIWF-BON.Progress:The network has established the first national database of the inland water fish biodiversity and collects and preserves more than ten thousand fish specimens and the fish diversity data from important river basins,including the data sets of fish species diversity,early resources,genetic diversity,and biology of important fish species,and so on.The network also has established technical specifications for monitoring fish diversity in inland waters in China based on the synthesis of the conventional and novel monitoring methods to promote the standardization of collecting fish diversity data and enhance the possibility of analyzing large-scale data.The Chishui River Rare and Endemic Fish Conservation and Aquatic Biodiversity Observation and Research Station of the Chinese Academy of Sciences has been built to further monitor the fish diversity of the Chishui River and undertake the research on the protection and restoration of fish resources in the upper reaches of the Yangtze River basin.Findings:Based on the long-term monitoring data,the network has systematically researched the distribution pattern,change,and the impact factors of the fish communities in the important rivers,the characteristics of reproductive biology and reproductive impact mechanisms of the endangered fish Chinese sturgeon(Acipenser sinensis),the environmental conditions of the four major Chinese carps reprodu

关 键 词:鱼类多样性 珍稀鱼类 特有鱼类 群落 繁殖 保护 监测 

分 类 号:S932.4[农业科学—渔业资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象