基于熵权法的DEA/AR交叉效率知识化制造模式评价  被引量:1

Evaluation of Knowledgeable Manufacturing Modes based on Entropy Weight Method for DEA/AR Cross-efficiency Approach

在线阅读下载全文

作  者:赵俊峰[1] 邓雪[2] 方雯 ZHAO Jun-feng;DENG Xue;FANG Wen(School of Mechanical and Electrical Engineering,Guangdong Polytechnic of Industry and Commerce,Guangzhou 510510,China;School of Mathematics,South China University of Technology,Guangzhou 510640,China)

机构地区:[1]广东工贸职业技术学院机电工程学院,广东广州510510 [2]华南理工大学数学学院,广东广州510640

出  处:《数学的实践与认识》2020年第4期59-68,共10页Mathematics in Practice and Theory

基  金:2016年广东省自然科学基金(2016A030313545);2018年中央高校基本科研业务费(x2lxC2180170);2018年教育部人文社科规划基金(x2lxY9180090);2018年广东省软科学研究项目(2018A070712002);广东工贸职业技术学院重点项目(GDGM2016-CO-02,2016-J-09).

摘  要:用模糊DEA/AR交叉效率方法,解决制造模式的评价与排序问题.首先,构建了四种不同的DEA/AR交叉效率模型—任意型、对抗型、友好型和博弈型.然后,应用熵权法确定每一种交叉效率模型的最终交叉效率值,目的是用保证域来避免传统模型的权重偏差,从而实现了决策单元的相对有效评价和精确排序.同时,引入奇异指数的概念来衡量最终交叉效率的合理性及可靠性.最后,通过实例验证本文模型和方法的可行性及有效性:与采用简单DEA效率模型进行评价比较,我们的方法会使得效率更加精准、排序更加合理.Fuzzy DEA/AR cross-efficiency method is established to solve the problem of evaluation and sequencing of manufacturing modes.Firstly,four different DEA/AR crossefficiency models are constructed:arbitrary,aggressive,benevolent,and game.Then,the entropy weight method is applied to determine the final cross-efficiency value of each crossefficiency model.The purpose is to avoid the weight deviation of the traditional model by using the guarantee domain,so as to achieve the relative effective evaluation and accurate ranking of decision making units.At the same time,the concept of maverick index is introduced to measure the rationality and reliability of the ultimate cross-efficiency.Finally,the feasibility and validity of our proposed model and method are verified by a practical example.Compared with the simple DEA efficiency model,our method can make the efficiency more accurate and the ranking more reasonable.

关 键 词:知识化制造模式 数据包络/保证域 交叉效率评价 熵权法 奇异指数 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象