融合极值分布与MCMC的降水极值模拟研究  被引量:5

Simulations of extreme precipitations based on extreme distributions and MCMC method

在线阅读下载全文

作  者:贺新月 曾献奎[1] 王栋[1] HE Xinyue;ZENG Xiankui;WANG Dong(School of Earth Sciences and Engineering,Nanjing University,Nanjing 210023)

机构地区:[1]南京大学地球科学与工程学院,南京210023

出  处:《水力发电学报》2020年第11期49-58,共10页Journal of Hydroelectric Engineering

基  金:国家重点研发计划(2017YFC1502704);中央高校基本科研业务费专项资金(020614380106)

摘  要:模拟降水极值对于城市防洪具有重要意义。根据北京、深圳、济南1952—2012年的日降水资料,采用广义极值分布(GEV)与广义帕累托分布(GPD)分别模拟三个城市的年最大降水与超阈值降水序列,通过马尔科夫链蒙特卡洛方法(MCMC)识别参数,并对模拟结果加以综合分析。研究发现,MCMC方法在GEV与GPD参数的贝叶斯估计中行之有效,所识别最佳模型的相关性系数与确定性系数均普遍高达0.95,降水极值的均方根误差与平均绝对误差分别普遍低于0.6 mm与2.5 mm,且所获得的模拟值置信区间性质优良;采用GEV得到相同重现期的设计暴雨更大,采用GPD得到的模拟值置信区间性质更优;GEV与GPD对于不同地区的适用性不同,在模拟区域降水极值时应综合运用多种分布。Analysis of the uncertainty of extreme precipitations is essential to urban flood control.In this study,we select the records of daily precipitations in Beijing,Shenzhen and Jinan in the period of 1952 to 2012,and use them to simulate the annual maximum and peak-over-threshold precipitation sequences for each of these cities with the generalized extreme distribution(GEV)and generalized Pareto distribution(GPD).And the parameters are estimated using Markov chain Monte Carlo(MCMC)method.The simulation results show the MCMC method is well applicable to uncertainty analysis of extreme precipitation simulations.The best models it identified are featured with correlation coefficients and determination coefficients both generally as high as 0.95,root-mean-square errors and mean absolute errors of extreme precipitations generally lower than 0.6 mm and 2.5 mm,respectively,and well-behaved confidence intervals of the simulated values.The confidence intervals simulated using GPD perform better;the design rainstorms with the same recurrence interval calculated using GEV are stronger.Considering the difference of GEV and GPD in applicability to different cities,we recommend the method of combining different distributions be used in simulation of extreme precipitations.

关 键 词:降水极值 城市洪涝 不确定性分析 马尔科夫链蒙特卡洛方法 广义极值分布 广义帕累托分布 

分 类 号:TV122[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象