检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘琳 卢家宽 张博儒 易倩 LIU Ling;LU Jia-kuan;ZHANG Bo-ru;YI Qian(School of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
机构地区:[1]广西师范大学数学与统计学院,广西桂林541006
出 处:《青海师范大学学报(自然科学版)》2022年第4期1-4,共4页Journal of Qinghai Normal University(Natural Science Edition)
基 金:国家自然科学基金项目(11861015,12161010);广西自然科学基金项目(2020GXNSFAA238045);广西自然科学基金项目(2020GXNSFBA297121)
摘 要:通过假设G的某些特殊子群是TI-子群或次正规子群来研究群G的结构.在研究过程中应用极小阶反例法等方法证明了:如果有限群G的每个非亚循环子群是TI-子群或次正规子群当且仅当G的每个非亚循环子群是次正规子群并且G可解.进一步应用分类讨论法等方法证明了:如果有限群G的每个自中心化子群是TI-子群或次正规子群或p-幂零子群,其中p为素数,则G的每个子群是次正规子群或p-可解子群.同时证明了如果有限群G的每个自中心化子群是TI-子群或次正规子群或p-幂零子群,则G的每个自中心化子群是正规子群或p-可解子群.In this paper,we study the structure of groups G by assuming that some special subgroups are TI subgroups or subnormal subgroups.In the process of research,the minimum order counterexample method is used to prove that if the finite group if every non-metacyclic subg roup of a finite group G is a TI-subgroup or a subnormal subgroup of G if and only if every non-metacyclic subgroup of G must be subnormal subgroup and G is solvable.The classification discussion method is further applied to prove that if every self-centralizing subgroup of a finite group G is a TI-subgroup or a subnormal subgroup or a non-p-nilpotent subgroup of G,then every subgroup of G must be subnormal subgroup or p-solvable subgroup.It also proves that if every self-centralizing subgroup of a finite group G is a TI-subgroup or a subnormal subgroup or a non-p-nilpotent subgroup of G,then every self-centralizing subgroup of G must be subnormal subgroup or p-solvable subgroup.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.210.224