检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾秀云 陆华才[1] 吕禾丰 Zeng Xiuyun;Lu Huacai;Lyu Hefeng(Key Laboratory of Electric Drive and Control of Anhui Higher Education Institutes,Anhui Polytechnic University,Wuhu 241000,China)
机构地区:[1]安徽工程大学电气传动与控制安徽普通高校重点实验室,芜湖241000
出 处:《电子测量与仪器学报》2022年第4期179-186,共8页Journal of Electronic Measurement and Instrumentation
基 金:安徽省自然科学基金(2108085MF197)项目资助
摘 要:由于传统检测算法对棉布包装缺陷检测不够准确、对小目标缺陷识别率不够高,所以提出改进的Faster R-CNN深度学习网络,对棉布包装存在的破损、污渍、孔洞、杂质、线头等5种缺陷进行检测。通过对图像进行预处理实现图像增强,然后改进Faster R-CNN中的RPN和ROI结构,为加强小目标缺陷的检测能力,在主干网络中融合特征金字塔网络结构,最后对ROI进行双线性插值以解决多次量化引起的像素偏差问题。实验表明,改进后的网络对棉布包装表面缺陷检测的平均精度均值mAP为91.34%,与传统算法相比,mAP值提高了9.08%。Because the traditional detection algorithm is not accurate enough to detect cotton packaging defects and the recognition rate of small target defects is not high enough,an improved Faster R-CNN deep learning network is proposed to detect five defects such as damage,stain,hole,impurity and thread end in cotton packaging.Image enhancement is realized by preprocessing the image,then the RPN and ROI structure in Faster R-CNN are improved.In order to strengthen the detection ability of small target defects,the feature pyramid network structure is fused in the backbone network,and finally the ROI is bilinear interpolated to solve the problem of pixel deviation caused by multiple quantization.Experiments show that the average accuracy of the improved network for cotton packaging surface defect detection is 91.34%,which is 9.08%higher than the traditional algorithm.
关 键 词:缺陷检测 Faster R-CNN 特征金字塔网络 双线性插值改进
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30