基于3D结构光的芒果位姿判别与体积质量预测  被引量:2

Mango position detection volume and quality prediction based on 3D structural light

在线阅读下载全文

作  者:周朔 宋飞虎 李臻峰 李静[1] Zhou Shuo;Song Feihu;Li Zhenfeng;Li Jing(School of Mechanical Engineering,Jiangnan University,Wuxi 214000,China)

机构地区:[1]江南大学机械工程学院,无锡214000

出  处:《电子测量与仪器学报》2022年第2期49-56,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家自然科学基金(21606109)项目资助

摘  要:目前大部分芒果需通过人工识别体积质量来实现分拣和分级,造成效率低下、缺乏数据管理。机器视觉是提高芒果分级效率的有效手段,然而传统的工业相机仅能获取二维投影。针对这一情况,利用3D结构光系统,获取芒果的形状描述子结合三维深度信息。然后以80个矫正集为样本,利用Fisher判定方法进行位姿检测,并由非线性支持向量机建立“平躺”、“直立”两种位姿下的体积和质量预测模型,并对20个预测集进行误差分析。结果表明,加入深度信息后,位姿检测的准确率可提高到100%,体积质量的平均误差降低到5%以内。At present,most mangoes still need to be sorted and graded through manual identification of volume and quality,resulting in low efficiency and lack of data management.Machine vision is an effective means to improve the efficiency of mango grading,but traditional industrial cameras can only obtain two-dimensional projections.In response to this situation,this paper uses a 3 D structured light system to obtain mango shape descriptors combined with three-dimensional depth information.Then 80 correction sets are used as samples,and the fisher judgment method is used for pose detection,and the non-linear support vector machine establishes the volume and mass prediction models in the“flat”and“upright”poses.Error analysis is performed on the prediction set.The results show that after adding depth information,the accuracy of pose detection can be increased to 100%,and the average error of volume quality can be reduced to less than 5%.

关 键 词:结构光相机 形状描述子 图像处理 回归模型 Fisher判定 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS255.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象