Solitonic attractors in the coupled nonlinear Schrödinger equations with weak dissipations  

在线阅读下载全文

作  者:Kai-Yuan Qi Xian-kun Yao Li-Chen Zhao Zhan-Ying Yang 

机构地区:[1]School of Physics,Northwest University,Xi’an 710127,China [2]NSFC-SPTP Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China [3]Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China

出  处:《Communications in Theoretical Physics》2023年第6期22-26,共5页理论物理通讯(英文版)

基  金:supported by the National Natural Science Foundation of China(Contract No.12022513,12235007);the Major Basic Research Program of Natural Science of Shaanxi Province(Grant No.2018KJXX-094)

摘  要:We use the Lagrangian perturbation method to investigate the properties of soliton solutions in the coupled nonlinear Schrödinger equations subject to weak dissipation.Our study reveals that the two-component soliton solutions act as fixed-point attractors,where the numerical evolution of the system always converges to a soliton solution,regardless of the initial conditions.Interestingly,the fixed-point attractor appears as a soliton solution with a constant sum of the two-component intensities and a fixed soliton velocity,but each component soliton does not exhibit the attractor feature if the dissipation terms are identical.This suggests that one soliton attractor in the coupled systems can correspond to a group of soliton solutions,which is different from scalar cases.Our findings could inspire further discussions on dissipative-soliton dynamics in coupled systems.

关 键 词:coupled nonlinear systems weak dissipation solitonic attractor 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象