检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kai-Yuan Qi Xian-kun Yao Li-Chen Zhao Zhan-Ying Yang
机构地区:[1]School of Physics,Northwest University,Xi’an 710127,China [2]NSFC-SPTP Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China [3]Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China
出 处:《Communications in Theoretical Physics》2023年第6期22-26,共5页理论物理通讯(英文版)
基 金:supported by the National Natural Science Foundation of China(Contract No.12022513,12235007);the Major Basic Research Program of Natural Science of Shaanxi Province(Grant No.2018KJXX-094)
摘 要:We use the Lagrangian perturbation method to investigate the properties of soliton solutions in the coupled nonlinear Schrödinger equations subject to weak dissipation.Our study reveals that the two-component soliton solutions act as fixed-point attractors,where the numerical evolution of the system always converges to a soliton solution,regardless of the initial conditions.Interestingly,the fixed-point attractor appears as a soliton solution with a constant sum of the two-component intensities and a fixed soliton velocity,but each component soliton does not exhibit the attractor feature if the dissipation terms are identical.This suggests that one soliton attractor in the coupled systems can correspond to a group of soliton solutions,which is different from scalar cases.Our findings could inspire further discussions on dissipative-soliton dynamics in coupled systems.
关 键 词:coupled nonlinear systems weak dissipation solitonic attractor
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.178