High precision solutions to quantized vortices within Gross-Pitaevskii equation  

在线阅读下载全文

作  者:Hao-Hao Peng Jian Deng Sen-Yue Lou Qun Wang 

机构地区:[1]Department of Modern Physics,University of Science and Technology of China,Hefei,Anhui 230026,China [2]Institute of Frontier and Interdisciplinary Science,Key Laboratory of Particle Physics and Particle Irradiation(MOE),Shandong University,Qingdao,Shandong 266237,China [3]School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

出  处:《Communications in Theoretical Physics》2022年第9期23-32,共10页理论物理通讯(英文版)

摘  要:The dynamics of vortices in Bose-Einstein condensates of dilute cold atoms can be well formulated by Gross-Pitaevskii equation.To better understand the properties of vortices,a systematic method to solve the nonlinear differential equation for the vortex to very high precision is proposed.Through two-point Padéapproximants,these solutions are presented in terms of simple rational functions,which can be used in the simulation of vortex dynamics.The precision of the solutions is sensitive to the connecting parameter and the truncation orders.It can be improved significantly with a reasonable extension in the order of rational functions.The errors of the solutions and the limitation of two-point Padéapproximants are discussed.This investigation may shed light on the exact solution to the nonlinear vortex equation.

关 键 词:quantum vortex Gross-Pitaevskii equation two-point Padéapproximants 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象