检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaokai He Leong-Fai Wong Naqing Xie 何孝凯;黄亮辉;谢纳庆(School of Mathematics and Computational Science,Hunan First Normal University,Changsha 410205,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China)
机构地区:[1]School of Mathematics and Computational Science,Hunan First Normal University,Changsha 410205,China [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China
出 处:《Communications in Theoretical Physics》2020年第1期102-110,共9页理论物理通讯(英文版)
基 金:partially supported by the Natural Science Foundation of Hunan Province(Grant 2018JJ2073);partially supported by the National Natural Science Foundation of China(Grant 11671089).
摘 要:We discuss the spatial limit of the quasi-local mass for certain ellipsoids in an asymptotically flat static spherically symmetric spacetime.These ellipsoids are not nearly round but they are of interest as an admissible parametrized foliation defining the Arnowitt–Deser–Misner mass.The Hawking mass of this family of ellipsoids tends to-∞.In contrast,we show that the Hayward mass converges to a finite value.Moreover,a positive mass type theorem is established.The limit of the mass has a uniform positive lower bound no matter how oblate these ellipsoids are.This result could be extended for asymptotically Schwarzschild manifolds.And numerical simulation in the Schwarzschild spacetime illustrates that the Hayward mass is monotonically increasing near infinity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28