On limit behavior of quasi-local mass for ellipsoids at spatial infinity  

On limit behavior of quasi-local mass for ellipsoids at spatial infinity

在线阅读下载全文

作  者:Xiaokai He Leong-Fai Wong Naqing Xie 何孝凯;黄亮辉;谢纳庆(School of Mathematics and Computational Science,Hunan First Normal University,Changsha 410205,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China)

机构地区:[1]School of Mathematics and Computational Science,Hunan First Normal University,Changsha 410205,China [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Communications in Theoretical Physics》2020年第1期102-110,共9页理论物理通讯(英文版)

基  金:partially supported by the Natural Science Foundation of Hunan Province(Grant 2018JJ2073);partially supported by the National Natural Science Foundation of China(Grant 11671089).

摘  要:We discuss the spatial limit of the quasi-local mass for certain ellipsoids in an asymptotically flat static spherically symmetric spacetime.These ellipsoids are not nearly round but they are of interest as an admissible parametrized foliation defining the Arnowitt–Deser–Misner mass.The Hawking mass of this family of ellipsoids tends to-∞.In contrast,we show that the Hayward mass converges to a finite value.Moreover,a positive mass type theorem is established.The limit of the mass has a uniform positive lower bound no matter how oblate these ellipsoids are.This result could be extended for asymptotically Schwarzschild manifolds.And numerical simulation in the Schwarzschild spacetime illustrates that the Hayward mass is monotonically increasing near infinity.

关 键 词:quasi-local MASS asymptotically flat LIMIT BEHAVIOR 

分 类 号:O412.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象