基于BAS-BP模型的深基坑开挖地表沉降预测  被引量:7

Prediction of Ground Settlement in Deep Foundation Pit Excavation Based on BAS-BP Model

在线阅读下载全文

作  者:杨帆[1] 黄超 YANG Fan;HUANG Chao(School of Surveying and Geoscience,Liaoning Technical University,Fuxin 123000,China)

机构地区:[1]辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000

出  处:《测绘地理信息》2022年第5期47-50,共4页Journal of Geomatics

基  金:辽宁省教育厅重点实验室基础研究(LJZS001)

摘  要:针对反向传播(back propagation,BP)神经网络在训练过程中存在的易过度拟合、收敛速度慢和易陷入局部最优等问题,引入天牛须搜索(beetle antennae search,BAS)算法优化传统BP神经网络中的权值和阈值,建立了BAS-BP神经网络模型。利用深圳市某深基坑开挖的周围道路地表沉降监测数据进行BAS-BP模型仿真测试。实验结果表明,BAS-BP模型在均方误差(mean square error,MSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)精度指标上均优于BP神经网络模型,预测精度更高。To solve the problems of back propagation(BP)neural networks in the training process,such as being easy to over-fit,slow convergence and being easy to fall into local optimum,we optimize the weights and thresholds of traditional BP neural networks by beetle antennae search(BAS)algorithm,and establish a neural network model called BAS-BP.The simulation test of BAS-BP model is conducted by the monitoring data of surface subsidence of a deep excavation in Shenzhen.The experimental results show that the mean square error(MSE),the mean absolute error(MAE)and the mean absolute percentage error(MAPE)of BAS-BP model are better than those of BP neural network model,which indicates that it has higher prediction accuracy.

关 键 词:反向传播(back propagation BP)神经网络 天牛须搜索算法 地表沉降 沉降预测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TU433[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象