联合限幅和μ律压扩抑制可见光通信系统的峰均功率比  被引量:3

Reduction of peak-to-average power ratio in visible light communication system using clipping and normalized μ-law companding

在线阅读下载全文

作  者:候影影 吕健鸿 张丽娟 薛林林 王中鹏[1] HOU Yingying;LV Jianhong;ZHANG Lijuan;XUE Linlin;WANG Zhongpeng(School of Information and Electronic Engineering,Zhejiang University of Science and Technology,Hangzhou,Zhejiang 310000,China)

机构地区:[1]浙江科技学院信息与电子工程学院,浙江杭州310000

出  处:《光电子.激光》2022年第11期1192-1200,共9页Journal of Optoelectronics·Laser

基  金:浙江省自然科学基金(LZ221F010001);泛网无线通信教育部重点实验室(北京邮电大学)开放基金(KFKT-2020103)资助项目

摘  要:直流偏置光正交频分复用(DC-biased optical orthogonal frequency division multiplexing,DCO-OFDM)可见光通信(visible light communication,VLC)系统具有较高的峰均功率比(peak-to-average power ratio,PAPR)。为解决此问题,提出一种联合限幅和归一化μ律压扩算法抑制DCO-OFDM系统的PAPR。首先,该联合算法利用限幅操作对时域信号中的大峰值信号进行削波来降低信号的幅值;其次,对限幅后的信号再进行压扩变换。通过这种联合算法,DCO-OFDM系统的PAPR可以显著降低。实验仿真结果表明,当采用16QAM调制方式,互补累计函数的值为10^(-3)时,相比较于联合限幅和传统μ律压扩算法,此联合算法的PAPR下降了约2.206 dB。In order to solve the problem of peak to average power ratio(PAPR)in DC-biased optical orthogonal frequency division multiplexing(DCO-OFDM)visible light communication(VLC)system,a joint PAPR reduction algorithm based on combining clipping and normalizedμ-law companding is proposed.Firstly,some big peak signal in the time-domain is clipped by amplitude limiting to reduce the amplitude of the signal,and then the clipped signal is further processed by a normalizedμ-law companding transform.With this way,the PAPR of DCO-OFDM signal can be effectively reduced.Experimental simulation result shows that the value of complementary accumulative function is 10^(-3)when 16 QAM modulation is adopted,compared with the algorithm combined amplitude limiting with traditionalμ-law companding transform,the PAPR of the combined algorithm decreases by about 2.206 dB.

关 键 词:直流偏置光正交频分复用(DCO-DFDM) 峰均功率比(PAPR) 限幅 归一化μ律压扩技术 

分 类 号:TN929.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象