An Approximate Riemann Solver for Advection-Diffusion Based on the Generalized Riemann Problem  

在线阅读下载全文

作  者:Steven Jöns Claus-Dieter Munz 

机构地区:[1]Institute of Aerodynamics and Gas Dynamics,University of Stuttgart,Pfafenwaldring 21,70569 Stuttgart,Germany

出  处:《Communications on Applied Mathematics and Computation》2020年第3期515-539,共25页应用数学与计算数学学报(英文)

基  金:This work was supported by the German Research Foundation(DFG)through the Collaborative Research Center SFB TRR 75 Droplet Dynamics Under Extreme Ambient Conditions

摘  要:We construct an approximate Riemann solver for scalar advection-diffusion equations with piecewise polynomial initial data.The objective is to handle advection and diffusion simultaneously to reduce the inherent numerical diffusion produced by the usual advection flux calculations.The approximate solution is based on the weak formulation of the Riemann problem and is solved within a space-time discontinuous Galerkin approach with two subregions.The novel generalized Riemann solver produces piecewise polynomial solutions of the Riemann problem.In conjunction with a recovery polynomial,the Riemann solver is then applied to define the numerical flux within a finite volume method.Numerical results for a piecewise linear and a piecewise parabolic approximation are shown.These results indicate a reduction in numerical dissipation compared with the conventional separated flux calculation of advection and diffusion.Also,it is shown that using the proposed solver only in the vicinity of discontinuities gives way to an accurate and efficient finite volume scheme.

关 键 词:Generalized Riemann problem ADVECTION-DIFFUSION Discontinuous Galerkin Numerical flux ADER Diffusive generalized Riemann problem Space-time solution Recovery method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象