Second-Order Finite Difference/Spectral Element Formulation for Solving the Fractional Advection-Diffusion Equation  

在线阅读下载全文

作  者:Mostafa Abbaszadeh Hanieh Amjadian 

机构地区:[1]Department of Applied Mathematics,Faculty of Mathematics and Computer Sciences,Amirkabir University of Technology,No.424,Hafez Ave.,Tehran 15914,Iran

出  处:《Communications on Applied Mathematics and Computation》2020年第4期653-669,共17页应用数学与计算数学学报(英文)

基  金:The authors are grateful to the two reviewers for carefully reading this paper and for their comments and suggestions which have highly improved the paper.

摘  要:The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equa-tion.The time variable has been discretized by a second-order finite difference procedure.The stability and the convergence of the semi-discrete formula have been proven.Then,the spatial variable of the main PDEs is approximated by the spectral element method.The convergence order of the fully discrete scheme is studied.The basis functions of the spectral element method are based upon a class of Legendre polynomials.The numerical experiments confirm the theoretical results.

关 键 词:Spectral method Finite diference method Fractional advection-difusion equation Galerkin weak form Unconditional stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象