检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋文柱 仇丽霞[2] 王旭春 李娅亨 胡风云[4] 李亚峰[5] 李荣山[5] 周晓霜[5] Song Wenzhu;Qiu Lixia;Wang Xuchun;Li Yaheng;Hu Fengyun;Li Yafeng;Li Rongshan;Zhou Xiaoshuang(Department of Nephrology,the Fifth Hospital of Shanxi Medical University(Shanxi Provincial People′s Hospital),Taiyuan 030012,China;School of Public Health,Shanxi Medical University,Taiyuan 030001,China;Shanxi Provincial Key Laboratory of Kidney Disease,Taiyuan 030012,China;Department of Neurology,the Fifth Hospital of Shanxi Medical University(Shanxi Provincial People′s Hospital),Taiyuan 030012,China;Department of Nephrology,the Fifth Hospital of Shanxi Medical University(Shanxi Provincial People′s Hospital),Shanxi Provincial Key Laboratory of Kidney Disease,Taiyuan 030012,China)
机构地区:[1]山西医科大学第五临床医学院(山西省人民医院)肾内科,太原030012 [2]山西医科大学公共卫生学院,太原030001 [3]山西省肾脏疾病重点实验室,太原030012 [4]山西医科大学第五临床医学院(山西省人民医院)神经内科,太原030012 [5]山西医科大学第五临床医学院(山西省人民医院)肾内科山西省肾脏疾病重点实验室,太原030012
出 处:《中华医学杂志》2023年第18期1401-1409,共9页National Medical Journal of China
基 金:肾脏病研究国家级培育重点实验室(2020SYS01);肾脏病山西省重点实验室(201805D111020)
摘 要:目的构建肾小球和肾小管损伤相关因素的贝叶斯网络模型。方法本研究为横断面研究。2019年4至11月山西省人民医院对山西省10个县区开展慢性肾脏病机会性筛查项目,收集研究对象的一般资料和血、尿标本实验室检查结果。采用χ^(2)检验、logistic回归筛选肾小球、肾小管损伤的相关因素并构建基于最大最小爬山法(MMHC)的贝叶斯网络模型。结果共纳入研究对象12269名,男5198名,女7071名,中位年龄58岁(40~91岁)。肾小球和肾小管损伤的患病率分别为12.7%(1561/12269)和11.6%(1425/12269)。肾小球损伤的贝叶斯网络由8个节点和10条有向边构成;肾小管损伤的贝叶斯网络由11个节点和17条有向边构成。贝叶斯网络显示,年龄、糖化血红蛋白为肾小球损伤的直接相关因素,性别、空腹血糖为肾小球损伤的间接相关因素;年龄、性别、空腹血糖、糖化血红蛋白为肾小管损伤的直接相关因素。肾小球损伤和肾小管损伤贝叶斯网络模型的受试者工作特征曲线下面积分别为0.761(95%CI:0.746~0.777)和0.753(95%CI:0.736~0.769)。结论贝叶斯网络能揭示肾小球损伤、肾小管损伤各相关因素之间的复杂网络关系,贝叶斯风险推理能为临床上预防肾小球和肾小管损伤提供参考价值。Objective To construct Bayesian network(BN)models to explore the factors related to glomerular injury(GI)and tubular injury(TI).Methods A cross-sectional study was carried out.From April to November 2019,Shanxi Provincial People′s Hospital performed an opportunistic screening for chronic kidney disease in 10 counties of Shanxi Province.The general data and laboratory results of blood and urine samples were collected.Chi-square test and logistic regression were used to explore the related factors of GI and TI,which were included in the construction of BN models with max-min hill-climbing(MMHC)algorithm.Results A total of 12269 participants were included,there were 5198 males and 7071 females,with a median age of 58(40-91)years.The prevalence of GI and TI was 12.7%(1561/12269)and 11.6%(1425/12269),respectively.The BN model consisted of 8 nodes and 10 edges for GI,and 11 nodes and 17 edges for TI,respectively.BN models showed that age and glycated hemoglobin were direct related factors for GI,while gender and fasting blood glucose were indirect related factors for GI.Age,gender,fasting blood glucose and glycosylated hemoglobin were direct related factors for TI.Additionally,the area under the receiver operating characteristic curve(AUC)was 0.761(95%CI:0.746-0.777)and 0.753(95%CI:0.736-0.769)for GI and TI BN models,respectively.Conclusions BN models allow for identifying the complex network relationships among the factors related to GI and TI.Meanwhile,Bayesian risk reasoning can provide reference value for the clinical prevention of GI and TI.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49