检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHAKARESKI Jacob
机构地区:[1]Ecole Polytechnique Fédérale de Lausanne
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2006年第5期773-783,共11页浙江大学学报(英文版)A辑(应用物理与工程)
摘 要:The author designed two algorithms for distributed cooperation among multiple video streams sharing common communication resources. The algorithms take advantage of an optimization framework that characterizes video packets such that joint resource allocation can be implemented not only over the packets of a single stream, but also across packets of different streams. The first algorithm enables collaboration among multiple video senders in an 802.11 CSMA/CA wireless network such that their joint performance is maximized. Via the algorithm, the users cooperatively establish transmission priorities based on the assigned characterizations of their video packets. The second technique allows for low-complexity joint bandwidth adaptation of multiple video streams at intermediate network nodes in the Internet in order to maximize the overall network performance. The author analyzes the advantages of the proposed algorithms over conventional solutions employed in such scenarios. It is shown that depending on system parameters such as available network data rate the proposed techniques can provide substantial gains in end-to-end performance.The author designed two algorithms for distributed cooperation among multiple video streams sharing common communication resources. The algorithms take advantage of an optimization framework that characterizes video packets such that joint resource allocation can be implemented not only over the packets of a single stream, but also across packets of different streams. The first algorithm enables collaboration among multiple video senders in an 802.11 CSMA/CA wireless network such that their joint performance is maximized. Via the algorithm, the users cooperatively establish transmission priorities based on the assigned characterizations of their video packets. The second technique allows for low-complexity joint bandwidth adaptation of multiple video streams at intermediate network nodes in the Internet in order to maximize the overall network performance. The author analyzes the advantages of the proposed algorithms over conventional solutions employed in such scenarios. It is shown that depending on system parameters such as available network data rate the proposed techniques can provide substantial gains in end-to-end performance.
关 键 词:MEDIA cooperation DISTRIBUTED video streaming Wireless networks RESOURCE allocation Rate-quality optimization
分 类 号:TN919.8[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117