Implementation of broadband low-sidelobe beamforming in time domain  被引量:2

Implementation of broadband low-sidelobe beamforming in time domain

在线阅读下载全文

作  者:YANG Yixin~1, SUN Chao, MA Yuanliang (Institute of Acoustic Engineering, Northwestern Polytechnical University, Xi’an 710072, China) 

出  处:《声学技术》2003年第z1期19-23,共5页Technical Acoustics

基  金:ThisworkwassupportedbyNationalNatureScienceFoundationofChina(Grantnumber :69980 2 0 10 )

摘  要:In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.

关 键 词:BROADBAND beamforming  low SIDELOBE level  FIR filter  time domain  SONAR 

分 类 号:TB5[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象