检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数据采集与处理》2008年第5期584-588,共5页Journal of Data Acquisition and Processing
摘 要:分析了基于粗糙集理论的连续属性离散化的实质,在此基础上提出了一种基于小生境离散粒子群优化的启发式全局离散化算法。该算法结合粗糙集理论,将决策属性支持度作为决策表整体分类能力的度量,然后利用离散粒子群优化算法,以最小断点集和最大决策属性支持度为优化目标,在保持决策表分类能力不变的情况下,通过粒子的迭代寻求最优值;同时为了避免粒子在迭代过程中的早熟收敛问题,引入小生境共享机制,加强了离散粒子群算法的全局搜索能力。通过实验将本文算法与其他算法进行了比较,结果表明采用本文算法得到了较少的断点数,提高了规则的分类正确率,验证了该算法的有效性和稳定性。The essentials of discretization approaches based on the rough set theory are analyzed firstly,and then a new heuristic discretization algorithm is proposed based on the niche discrete particle swarm optimization. The algorithm introduces the support degree of the decision attributes to measure the classification ability of the decision table.The minimum sets of cuts and the maximum support degree of decision attributes are used as optimizing goals in the discrete particle swarm optimization.The algorithm s...
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222