Dendritic and eutectic growth in Sb_(60)Ag_(20)Cu_(20) ternary alloy  被引量:3

Dendritic and eutectic growth in Sb_(60)Ag_(20)Cu_(20) ternary alloy

在线阅读下载全文

作  者:RUAN Ying WEI BingBo 

机构地区:[1]Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China

出  处:《Science China(Physics,Mechanics & Astronomy)》2007年第5期563-571,共9页中国科学:物理学、力学、天文学(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105) ;the Doctorate Foundation of North-western Polytechnical University of China (Grant No. CX200419)

摘  要:The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high under- cooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb), θ and ε phases. High undercooling enlarges the solute solubility of (Sb) phase, which causes its crystal lattice to expand and its crystal lattice constants to increase. Primary (Sb) phase grows in two modes: at small undercoolings non-faceted dendrite growth is the main growth form; whereas at large undercool- ings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θ phases leads to (θ + Sb) pseudobinary eutectic hard to form, whereas strips of θ form when the alloy melt reaches the (θ + Sb) pseudobinary eutectic line. The cooperative growth of θ and ε phases contrib- utes to the formation of (ε + θ ) pseudobinary eutectic easily. In addition, the crys- tallization route has been determined via microstructural characteristic analysis and DSC experiment.The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high under- cooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb), θ and ε phases. High undercooling enlarges the solute solubility of (Sb) phase, which causes its crystal lattice to expand and its crystal lattice constants to increase. Primary (Sb) phase grows in two modes: at small undercoolings non-faceted dendrite growth is the main growth form; whereas at large undercool- ings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θ phases leads to (θ + Sb) pseudobinary eutectic hard to form, whereas strips of θ form when the alloy melt reaches the (θ + Sb) pseudobinary eutectic line. The cooperative growth of θ and ε phases contrib- utes to the formation of (ε + θ ) pseudobinary eutectic easily. In addition, the crys- tallization route has been determined via microstructural characteristic analysis and DSC experiment.

关 键 词:high undercooling  TERNARY eutectic  crystal nucleation  DENDRITE growth 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象