检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:HAN DaXiong1, CHEN WeiZhu2, HAN Bo2 & ZHAO YuFen1,2 1 Department of Pharmacy, Medical College of Xiamen University, Xiamen 361005, China 2 Department of Chemistry, Xiamen University, Xiamen 361005, China
出 处:《Science China(Life Sciences)》2007年第5期580-586,共7页中国科学(生命科学英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant No. 20572061);the Science Foundation of Xiamen University (Grant No. Z03120)
摘 要:Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid -5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the sta-bility of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemi-cal/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further ex-periments in this area.Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid -5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the sta-bility of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemi-cal/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further ex-periments in this area.
关 键 词:GENETIC code phosphate ORIGIN of life CHIRAL selection HOMOCHIRALITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33