检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105
出 处:《电气技术》2007年第4期21-24,共4页Electrical Engineering
基 金:辽宁省自然科学基金项目;20051206;辽宁省高校优秀人才基金项目;2005219005
摘 要:针对煤矿主通风机故障与征兆对应关系复杂的特点和利用传统BP网络进行故障诊断存在训练速度慢、易陷入局部极小的缺点,本文提出基于小波和概率神经网络的故障诊断方法。先利用时频两域有紧支撑能力的Mexican Hat小波变换故障信号并提取能量归一化故障特征向量;然后将概率神经网络作为诊断决策分类器,输出故障模式。该方法充分利用了概率神经网络计算简单、收敛快、新增样本无须重新训练的特点,而且通过小波特征提取有效的故障特征,减少了网络输入层节点数,降低网络规模,减少计算复杂度,加快了训练速度。经实际验证,此方法准确的诊断煤矿主通风机故障类型,具有速度快、精确度高的特点。Owing to the complicated relationship between the faults and the corresponding symptoms of coal mine main ventilator and the general BP neural network’s shortcomings such as low learning speed, probability of local minimum point. This paper introduces a fault diagnosis based on wavelet and PNN, which firstly uses Mexican Hat wavelet to transform diagnosis signal and extract energy normalized vector, then uses PNN to output fault as a classifier. This method utilizes the PNN’s advantages, such as simple structure, fast speed and new trained samples can be added to PNN easily. Moreover, it decrease node numbers, network scale, and computation complexity and accelerate the training speed by way of extracting energy normalized vector. Proved by example that this way can diagnose the main coal mine ventilator’s type quickly and accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171