Seismic wave propagating in Kelvin-Voigt homogeneous visco-elastic media  被引量:5

Seismic wave propagating in Kelvin-Voigt homogeneous visco-elastic media

在线阅读下载全文

作  者:YUAN Chunfang1, PENG Suping1, ZHANG Zhongjie2 & LIU Zhenkuan3 1. China University of Mining & Technology, Beijing 100083, China 2. Institute of Geophysics, Chinese Academy of Sciences, Beijing 100101, China 3. Exploration and Development Research Institute of Daqing Oilfield, Daqing 163712, China 

出  处:《Science China Earth Sciences》2006年第2期147-153,共7页中国科学(地球科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.50490270);the National Basic Research Program of China(Grant Nos.2005CB221501 and 2002CB211707).

摘  要:This paper studies, under a small disturbance, the responses of seismic transient wave in the visco-elastic media and the analytic solution of the corresponding third-order partial differential equation. A plane wave solution of Kelvin-Voigt homogeneous visco-elastic third-order partial differ-ential equation with a pulse source is obtained. By the principle of pulse stacking of particle vibration, the result is extended to the solution of Kelvin-Voigt homogeneous visco-elastic third-order partial differential equation with any source. The velocities of seismic wave propagating and the attenuation of seismic wave in Kelvin-Voigt homogeneous visco-elastic media are discussed. The velocities of seismic wave propagating and the coefficient of attenuation of seismic wave in Kelvin-Voigt homogeneous visco-elastic media are derived, expressed as functions of density of the media, elastic modulus and visco-elastic coefficient. These results can be applied in inversing lithology parameters in geophysical prospecting.This paper studies, under a small disturbance, the responses of seismictransient wave in the visco-elastic media and the analytic solution of the corresponding third-orderpartial differential equation. A plane wave solution of Kelvin-Voigt homogeneous visco-elasticthird-order partial differential equation with a pulse source is obtained. By the principle of pulsestacking of particle vibration, the result is extended to the solution of Kelvin-Voigt homogeneousvisco-elastic third-order partial differential equation with any source. The velocities of seismicwave propagating and the attenuation of seismic wave in Kelvin-Voigt homogeneous visco-elastic mediaare discussed. The velocities of seismic wave propagating and the coefficient of attenuation ofseismic wave in Kelvin-Voigt homogeneous visco-elastic media are derived, expressed as functions ofdensity of the media, elastic modulus and visco-elastic coefficient. These results can be applied ininversing lithology parameters in geophysical prospecting.

关 键 词:Kelvin-Voigt VISCO-ELASTIC VELOCITY ATTENUATION SEISMIC wave. 

分 类 号:P315.31[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象