检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YANG Shouzhi & PENG Lizhong Department of Mathematics, Shantou University, Shantou 515063, China LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
出 处:《Science China Mathematics》2006年第1期86-97,共12页中国科学:数学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.90104004&10471002);973 project of China(Grant No.G1999075105);the Natural Science Foundation of Guangdong Province(Grant No.05008289&032038);the Doctoral Foundation of Guangdong Province(Grant No.04300917).
摘 要:An algorithm is presented for raising an approximation order of any given orthogonal multiscaling function with the dilation factor a. Let φ(x) = [φ1(x),φ2(x),…,φr(x)]T be an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function φnew(x) = [ φT(x). f3r+1(x),φr+2(x),…,φr+s(x)}T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function φ(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function φ(x) = [φ1 (x), φ2(x), …, φr(x)]T is symmetric, then the new orthogonal multiscaling function φnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.An algorithm is presented for raising an approximation order of any given or thogonal multiscaling function with the dilation factor a. Let Ф(x) = [φ1(x), φ2 (x), … , φr (x)]Tbe an orthogonal multiscaling function with the dilation factor a and the approximation order m. We can construct a new orthogonal multiscaling function Фnew(x) = [ ФT(x),φr+1(x), φr+2(x),… ,φr+s(x)]T with the approximation order m + L(L ∈ Z+). In other words, we raise the approximation order of multiscaling function Ф(x) by increasing its multiplicity. In addition, we discuss an especial setting. That is, if given an orthogonal multiscaling function Ф(x) = [φ1(x), φ2(x), … , φr (x)]T is symmetric, then the new orthogo nal multiscaling function Фnew(x) not only raise the approximation order but also preserve symmetry. Finally, some examples are given.
关 键 词:orthogonal MULTISCALING functions approximation order symmetry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.51.45