Coefficient multipliers of mixed norm space in the ball Dedicated to Professor Sheng GONG on the occasion of his 75th birthday  被引量:1

Coefficient multipliers of mixed norm space in the ball

在线阅读下载全文

作  者:SHI Jihuai REN Guangbin 

机构地区:[1]Department of Mathematics, University of Science and Technology of China, Hefei 230026, China Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

出  处:《Science China Mathematics》2006年第11期1491-1503,共13页中国科学:数学(英文版)

基  金:This work was supported by the National Natural Science Foundation of China(Grant No.10471134);grants from Specialized Research Fund for the doctoral program of Higher Education(SRFDP20050358052);Program for New Century Excellent Talents in University(NCET-05-0539).

摘  要:In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q((?)1),Hu,v((?)2)) for the values of p, q, u, v in three cases: (i)0<p≤u≤∞, 0 < q≤min(1,v)≤frr. (ii) v =∞,0<p≤u≤∞, 1≤u, q≤∞. (iii) 1≤v≤2≤q≤∞, and 0<p≤u≤∞or 1≤p, u≤∞. The first case extends the result of Blasco, Jevtic, and Pavlovic in one variable. The third case generalizes partly the results of Jevtic, Jovanovic, and Wojtaszczyk to higher dimensions.In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q(ψ1),Hu,v(ψ2)) for the values of p,q,u,v in three cases: (i) 0 < p ≤ u ≤∞, 0 < q ≤min(1,v) ≤∞. (ii) v= ∞,0 < p ≤ u ≤∞, 1 ≤ u,q ≤∞. (iii) 1 ≤ v ≤ 2 ≤ q ≤∞, and 0 < p ≤ u ≤∞ or 1 ≤ p,u ≤∞. The first case extends the result of Blasco, Jevti(c), and Pavlovi(c) in one variable. The third case generalizes partly the results of Jevti(c), Jovanovi(c), and Wojtaszczyk to higher dimensions.

关 键 词:Coefflcient multipliers mixed norm spaces holomorphic functions. 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象