检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China Mathematics》2006年第11期1491-1503,共13页中国科学:数学(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(Grant No.10471134);grants from Specialized Research Fund for the doctoral program of Higher Education(SRFDP20050358052);Program for New Century Excellent Talents in University(NCET-05-0539).
摘 要:In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q((?)1),Hu,v((?)2)) for the values of p, q, u, v in three cases: (i)0<p≤u≤∞, 0 < q≤min(1,v)≤frr. (ii) v =∞,0<p≤u≤∞, 1≤u, q≤∞. (iii) 1≤v≤2≤q≤∞, and 0<p≤u≤∞or 1≤p, u≤∞. The first case extends the result of Blasco, Jevtic, and Pavlovic in one variable. The third case generalizes partly the results of Jevtic, Jovanovic, and Wojtaszczyk to higher dimensions.In the paper, we characterize the coefficient multiplier spaces of mixed norm spaces (Hp,q(ψ1),Hu,v(ψ2)) for the values of p,q,u,v in three cases: (i) 0 < p ≤ u ≤∞, 0 < q ≤min(1,v) ≤∞. (ii) v= ∞,0 < p ≤ u ≤∞, 1 ≤ u,q ≤∞. (iii) 1 ≤ v ≤ 2 ≤ q ≤∞, and 0 < p ≤ u ≤∞ or 1 ≤ p,u ≤∞. The first case extends the result of Blasco, Jevti(c), and Pavlovi(c) in one variable. The third case generalizes partly the results of Jevti(c), Jovanovi(c), and Wojtaszczyk to higher dimensions.
关 键 词:Coefflcient multipliers mixed norm spaces holomorphic functions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143