检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIN Lu CUI Xia
出 处:《Science China Mathematics》2006年第12期1879-1896,共18页中国科学:数学(英文版)
基 金:This work was supported by the National Natural Science Foundation of China (Grant No.10371059).
摘 要:This paper reports a robust kernel estimation for fixed design nonparametric regression models.A Stahel-Donoho kernel estimation is introduced,in which the weight functions depend on both the depths of data and the distances between the design points and the estimation points.Based on a local approximation,a computational technique is given to approximate to the incomputable depths of the errors.As a result the new estimator is computationally efficient.The proposed estimator attains a high breakdown point and has perfect asymptotic behaviors such as the asymptotic normality and convergence in the mean squared error.Unlike the depth-weighted estimator for parametric regression models,this depth-weighted nonparametric estimator has a simple variance structure and then we can compare its efficiency with the original one.Some simulations show that the new method can smooth the regression estimation and achieve some desirable balances between robustness and efficiency.This paper reports a robust kernel estimation for fixed design nonparametric regression models. A Stahel-Donoho kernel estimation is introduced, in which the weight functions depend on both the depths of data and the distances between the design points and the estimation points. Based on a local approximation, a computational technique is given to approximate to the incomputable depths of the errors. As a result the new estimator is computationally efficient. The proposed estimator attains a high breakdown point and has perfect asymptotic behaviors such as the asymptotic normality and convergence in the mean squared error. Unlike the depth-weighted estimator for parametric regression models, this depth-weighted nonparametric estimator has a simple variance structure and then we can compare its efficiency with the original one. Some simulations show that the new method can smooth the regression estimation and achieve some desirable balances between robustness and efficiency.
关 键 词:NONPARAMETRIC regression kernel estimation statistical depth robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249