Debris Micro-Morphology Analysis Based on AI Techniques  

基于人工智能技术的磨粒显微形态学分析(英文)

在线阅读下载全文

作  者:吴振锋 左洪福 郭琳 

机构地区:[1]Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Science and Technology Co., Nanjing University of Science and Technology,

出  处:《Chinese Journal of Aeronautics》2001年第1期30-36,共7页中国航空学报(英文版)

摘  要:Based on the micro-morphology theory, the authors set up a set of feature descriptors of debris, use it to abstract the characteristic information of wearing particles, and identify them by the auto clustering, Artificial Neural Network (ANN) and other artificial intelligence (AI) means. The technique has found its application in the wearing fault diagnosis of aero-engines.Based on the micro-morphology theory, the authors set up a set of feature descriptors of debris, use it to abstract the characteristic information of wearing particles, and identify them by the auto clustering, Artificial Neural Network (ANN) and other artificial intelligence (AI) means. The technique has found its application in the wearing fault diagnosis of aero-engines.

关 键 词:Artificial intelligence Failure (mechanical) Neural networks Space debris Wear of materials 

分 类 号:V263.6[航空宇航科学与技术—航空宇航制造工程] TH132[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象