Investigation of Unsteady Flow in a Diffuser Pump  

扩压器-水泵内非稳定流动研究(英文)

在线阅读下载全文

作  者:孙金菊 王尚锦 H.Tsukamoto 

机构地区:[1]Xi′an Jiaotong University, [2]Kyushu Institute of Technology,

出  处:《Chinese Journal of Aeronautics》2001年第3期134-139,共6页中国航空学报(英文版)

摘  要:Flow in pumps is essentially three-dimensional and unsteady, and it has much influence on the pump hydraulic performance and structural vibration. This paper presents a numerical methodology developed for modeling such complicated flows. Three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, together with standard k-Ε equation, describe the unsteady-turbulent flow in the pumps. System characteristics are incorporated into the pump CFD models to allow for fluid acceleration in the piper Arbitrary Sliding Interface (ASI) is used to simulate the relative movement between the impeller and stationary components; a numerical analysis is carried out for the entire circumference to consider the asymmetrical flow physics during the stall condition. Combination of these techniques has captured the realistic unsteady flow physics in the pumps and it permits good prediction for the pump off-design performance.Flow in pumps is essentially three-dimensional and unsteady, and it has much influence on the pump hydraulic performance and structural vibration. This paper presents a numerical methodology developed for modeling such complicated flows. Three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, together with standard k-Ε equation, describe the unsteady-turbulent flow in the pumps. System characteristics are incorporated into the pump CFD models to allow for fluid acceleration in the piper Arbitrary Sliding Interface (ASI) is used to simulate the relative movement between the impeller and stationary components; a numerical analysis is carried out for the entire circumference to consider the asymmetrical flow physics during the stall condition. Combination of these techniques has captured the realistic unsteady flow physics in the pumps and it permits good prediction for the pump off-design performance.

关 键 词:Computational fluid dynamics IMPELLERS Mathematical models Navier Stokes equations PUMPS Turbulent flow Vibrations (mechanical) 

分 类 号:TH311[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象