检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Mechanical Engineering》2002年第3期243-247,共5页中国机械工程学报(英文版)
基 金:This project is supported by 95 Pandeng Preselect Project (No.PD9521908);and 973 Project(No.G199802320).
摘 要:Gears alternately mesh and detach in driving process, and then workingconditions of gears are alternately changing, so they are easy to be spalled and worn. But becauseof the effect of additive gaussian measurement noises, the signal-to-noises ratio is low; theirfault features are difficult to extract. This study aims to propose an approach of gear faultsclassification, using the cumulants and support vector machines. The cumulants can eliminate theadditive gaussian noises, boost the signal-to-noises ratio. Generalisation of support vectormachines as classifier, which is employed structural risk minimisation principle, is superior tothat of conventional neural networks, which is employed traditional empirical risk minimisationprinciple. Support vector machines as the classifier, and the third and fourth order cumulants asinput, gears faults are successfully recognized. The experimental results show that the method offault classification combining cumulants with support vector machines is very effective.Gears alternately mesh and detach in driving process, and then workingconditions of gears are alternately changing, so they are easy to be spalled and worn. But becauseof the effect of additive gaussian measurement noises, the signal-to-noises ratio is low; theirfault features are difficult to extract. This study aims to propose an approach of gear faultsclassification, using the cumulants and support vector machines. The cumulants can eliminate theadditive gaussian noises, boost the signal-to-noises ratio. Generalisation of support vectormachines as classifier, which is employed structural risk minimisation principle, is superior tothat of conventional neural networks, which is employed traditional empirical risk minimisationprinciple. Support vector machines as the classifier, and the third and fourth order cumulants asinput, gears faults are successfully recognized. The experimental results show that the method offault classification combining cumulants with support vector machines is very effective.
关 键 词:Support vector machine GEAR Fault diagnosis CUMULANT FEATUREEXTRACTION
分 类 号:TH132.4[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195