检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《China Ocean Engineering》2000年第1期103-112,共10页中国海洋工程(英文版)
基 金:National Natural Science Foundation of China(Grant No.59709002)
摘 要:In this paper, the second-order perturbation method in frequency domain is used to calculate RAO and spectra of motion and mooring line tension of a turret-moored tanker in ballast condition. The calculated results are compared with corresponding experiment results. In the experiment the wave heading is 180 degrees, and the wave spectra is the P-M spectrum and white noise spectrum. In the theoretical calculations, the damping coefficient of slow oscillation of the tanker is determined on the basis of the damping obtained from a test of irregular waves where the mooring system is replaced by a nonlinear spring with nonlinear stiffness similar to that of the mooring system. From the comparison between theoretical calculations and experiment al results, it can be found that the theoretical results obtained by the second-order perturbation method in frequency domain are in good agreement with the experimental results, indicating that the damping coefficient of slow oscillation of the tanker required in frequency domain calculation can be determined by reference to the damping coefficient of the tanker moored by a spring system in irregular waves, and the second-order perturbation method can be used to analyze the dynamic response of a turret-moored tanker.In this paper, the second-order perturbation method in frequency domain is used to calculate RAO and spectra of motion and mooring line tension of a turret-moored tanker in ballast condition. The calculated results are compared with corresponding experiment results. In the experiment the wave heading is 180 degrees, and the wave spectra is the P-M spectrum and white noise spectrum. In the theoretical calculations, the damping coefficient of slow oscillation of the tanker is determined on the basis of the damping obtained from a test of irregular waves where the mooring system is replaced by a nonlinear spring with nonlinear stiffness similar to that of the mooring system. From the comparison between theoretical calculations and experiment al results, it can be found that the theoretical results obtained by the second-order perturbation method in frequency domain are in good agreement with the experimental results, indicating that the damping coefficient of slow oscillation of the tanker required in frequency domain calculation can be determined by reference to the damping coefficient of the tanker moored by a spring system in irregular waves, and the second-order perturbation method can be used to analyze the dynamic response of a turret-moored tanker.
关 键 词:turret-moored tanker dynamic analysis second-order perturbation
分 类 号:U653.2[交通运输工程—港口、海岸及近海工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69