On the boundary slip of fluid flow  被引量:8

On the boundary slip of fluid flow

在线阅读下载全文

作  者:WU Chengwei MA Guojun 

机构地区:[1]State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China

出  处:《Science China(Physics,Mechanics & Astronomy)》2005年第2期178-187,共10页中国科学:物理学、力学、天文学(英文版)

基  金:This work was jointly supported by the National Natural Science Foundation of China(Grant No.10272028);the Doctor Education Foundation of China Education Ministry(Grant No.20030141013).

摘  要:This paper presents a stress controlled boundary slip model and predicts the fluid-solid interface slip in a system of parallel sliding plates or a sphere approaching a smooth plane. The numerical simulation results are in striking agreement with the existing experimental observations. This model assumes that there is a limiting shear stress. No slip occurs if the surface shear stress is smaller than the limiting shear stress, and slip occurs when the surface shear stress equals it. It is found that boundary slip dramatically decreases the hydrodynamic pressure if the two squeezed surfaces have the same slip property. Finally, the hydrodynamic force reaches a saturation status and almost does not decrease any more. Compared with the no-slip solution, hydrodynamic force is found to decrease by over two orders in the case of boundary slip. When the squeezed surfaces have different slip properties, however, the hydrodynamic pressure is mainly controlled by the surface having a smaller surface limiting shear stress, and reduces more slowly compared with the case of two surfaces having the same slip property. Even when one of the surfaces has a zero surface limiting shear stress, a considerable hydrodynamic force still exists.This paper presents a stress controlled boundary slip model and predicts the fluid-solid interface slip in a system of parallel sliding plates or a sphere approaching a smooth plane. The numerical simulation results are in striking agreement with the existing experimental observations. This model assumes that there is a limiting shear stress. No slip occurs if the surface shear stress is smaller than the limiting shear stress, and slip occurs when the surface shear stress equals it. It is found that boundary slip dramatically decreases the hydrodynamic pressure if the two squeezed surfaces have the same slip property. Finally, the hydrodynamic force reaches a saturation status and almost does not decrease any more. Compared with the no-slip solution, hydrodynamic force is found to decrease by over two orders in the case of boundary slip. When the squeezed surfaces have different slip properties, however, the hydrodynamic pressure is mainly controlled by the surface having a smaller surface limiting shear stress, and reduces more slowly compared with the case of two surfaces having the same slip property. Even when one of the surfaces has a zero surface limiting shear stress, a considerable hydrodynamic force still exists.

关 键 词:BOUNDARY slip  INTERFACIAL LIMITING SHEAR stress  fluid flow. 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象