Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea  被引量:13

Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea

在线阅读下载全文

作  者:C.Colin A.Trentesaux D.Blamart 

机构地区:[1]FRE 2566 Orsaylerre,UMR PBDS du CNRS,Laboratoire des Sciences du Climat et de I'Environnement Université de Paris XI,91405 Orsay,France,Universite de Lille I,59655 Villeneuve d'Ascq,France,Laboratoire mixte CNRS-CEA,91198 Gif-sur-Yvette,France

出  处:《Science China Earth Sciences》2005年第1期84-92,共9页中国科学(地球科学英文版)

基  金:This study was sup-ported by the National Key Basic Research Special Foundation Project of China(Grant No.G2000078500);the Nationai Natural Science Foundation of China(Grant No.40102010);the Shanghai Rising Star ProgTam,and the Ministere de la Recherche of France.

摘  要:High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution.The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin.Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite)and smectites/kaolinite ratios are determined as mineralogical indicators of East Asian monsoon variations. Relatively high ratios occur during interglacials and indicate strengthened summer-monsoon rainfall and weakened winter-monsoon winds; relatively lower ratios happened in glacials, indicating intensified winter monsoon and weakened summer monsoon. The evolution of the summer and winter monsoons provides an almost linear response to the summer insolation of the Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution. The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin. Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite) and smectites/kaolinite ratios are determined as mineralogical indicators of East Asian monsoon variations. Relatively high ratios occur during interglacials and indicate strengthened summer-monsoon rainfall and weakened winter-monsoon winds; relatively lower ratios happened in glacials, indicating intensified winter monsoon and weakened summer monsoon. The evolution of the summer and winter monsoons provides an almost linear response to the summer insolation of the Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

关 键 词:clay minerals  East ASIAN monsoon  late Quaternary  MEKONG River  South China Sea. 

分 类 号:P532[天文地球—古生物学与地层学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象