Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China  被引量:22

Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China

在线阅读下载全文

作  者:TAO Mingxin XU Yongchang SHI Baoguang JIANG Zhongti SHEN Ping LI Xiaobin SUN Mingliang 

机构地区:[1]Key Laboratory of Gas Geochemistry,Lanzhou Institute of Geology,Chinese Academy of Sciences,Lanzhou 730000,China [2]Beijing Normal University,Beijing 100875,China [3]The Practical Geologic Data Center,State Land Resource Department,Sanhe 065201,China

出  处:《Science China Earth Sciences》2005年第7期1074-1088,共15页中国科学(地球科学英文版)

基  金:the State "973" Program(Grant No.G2002CB211701); the National Natural Science Foundation of China(Grant No.40372065).

摘  要:In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar, and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth’s crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle de- gassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone. (2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic envi- ronment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth’s crust, with the R/Ra values within the range of 0.43―1.13, and weak mantle degassing with mantle-source helium accounting for 5%―14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of mag- nitude of 10?7, and the CH4/3He values, 109―1010, CO2/3He values, 106―108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10?8) and high CO2/3He-low R system, with no obvi- ous sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle de- gassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling ac- tivity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and evolution of the huge deep

关 键 词:fault zone mantle degassing deep-seated structure 3He/4He CO2/3He CH4/3He. 

分 类 号:P545[天文地球—构造地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象