Pathways of birnessite formation in alkali medium  被引量:7

Pathways of birnessite formation in alkali medium

在线阅读下载全文

作  者:FENG Xionghan1, TAN Wenfeng1, LIU Fan1, HUANG Qiaoyun1 & LIU Xiangwen2 1. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China 2. Testing Center, China University of Geosciences, Wuhan 430074, China 

出  处:《Science China Earth Sciences》2005年第9期1438-1451,共14页中国科学(地球科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.40403009 and 40101017);by Research Fund for the Doctoral Program of Higher Education(Grant No.2002050411).

摘  要:Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) forma- tion stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buser- ite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrys- tallization after dissolution of the intermediates, and the transformations of the minerals de- pended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of mate- rial sciences.Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) forma- tion stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buser- ite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrys- tallization after dissolution of the intermediates, and the transformations of the minerals de- pended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of mate- rial sciences.

关 键 词:birnessite  pathway of formation  reaction process  Eh-pH diagram  hausmannite  feitknechtite. 

分 类 号:O611.3[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象