Thermostability of photosynthesis in two new chlorophyll b-less rice mutants  被引量:4

Thermostability of photosynthesis in two new chlorophyll b-less rice mutants

在线阅读下载全文

作  者:LIN Zhifang1,PENG Changlian1,Xu Xinlan1,LIN Guizhu 1 & ZHANG Jingliu2 1.South China Institute of Botany,Chinese Academy of Sciences,Guangdong Key Laboratory of Digital Botanical Garden,Guangzhou 510650,China 2.National Key Laboratory of Plant Molecular Genetics,Institute of Plant Physiology & Ecology,Shanghai Institutes of Biological Sci- ences,Chinese Academy of Sciences,Shanghai 200032,China 

出  处:《Science China(Life Sciences)》2005年第2期139-147,共9页中国科学(生命科学英文版)

基  金:This work was supported by the State Key Basic Research and Development Plan of China(G1999011601);National Natural Science Foundation of China(Grant No.30470282).

摘  要:Leaves of the two new chlorophyll b-less rice mutants VG28-1, VG30-5 and the wild type rice cv. Zhonghua 11 were subjected to temperatures 28, 36, 40, 44 and 48℃ in the dark for 30 min or gradually elevated temperature from 30℃ to 80℃ at 0.5℃/min. The thermostability of photosynthetic apparatus was estimated by the changes in chlorophyll fluorescence parameters, photosynthetic rate and pigment content, chloroplast ultrastructure and tissue location of H2O2 accumulation. There were different patterns of Fo-temperature curves between the Chl b-less mutants and the wild type plant, and the temperature of Fo rising threshold was shifted 3℃ lower in the Chl b-less mutants (48℃) than in the wild type (51℃). At temperature up to about 45℃, chloroplasts were swollen and thylakoid grana became misty accompanied with the complete loss of photosynthetic oxygen evolution in the two Chl b-less mutants, but chloroplast ultrastruc- ture in the wild type showed no obvious alteration. After 55℃ exposure, the disordered thylakoid and significant H2O2 accumulation in leaves were found in the two Chl b-less mutants, whereas in the wild type plant, less H2O2 was accumulated and the swollen thylakoid still maintained a cer- tain extent of stacking. A large extent of the changes in qP, NPQ and Fv/Fm was consistent with the Pn decreasing rate in the Chl b-less mutants during high temperature treatment as compared with the wild type. The results indicated that the Chl b-less mutants showed a tendency for higher thermosensitivity, and loss of Chl b in LHC II could lead to less thermostability of PSII structure and function. Heat damage to photosynthetic apparatus might be partially attributed to the in- ternal oxidative stress produced at severely high temperature.Leaves of the two new chlorophyll b-less rice mutants VG28-1, VG30-5 and the wild type rice cv. Zhonghua 11 were subjected to temperatures 28, 36, 40, 44 and 48℃ in the dark for 30 min or gradually elevated temperature from 30℃ to 80℃ at 0.5℃/min. The thermostability of photosynthetic apparatus was estimated by the changes in chlorophyll fluorescence parameters, photosynthetic rate and pigment content, chloroplast ultrastructure and tissue location of H2O2 accumulation. There were different patterns of Fo-temperature curves between the Chl b-less mutants and the wild type plant, and the temperature of Fo rising threshold was shifted 3℃ lower in the Chl b-less mutants (48℃) than in the wild type (51℃). At temperature up to about 45℃, chloroplasts were swollen and thylakoid grana became misty accompanied with the complete loss of photosynthetic oxygen evolution in the two Chl b-less mutants, but chloroplast ultrastruc- ture in the wild type showed no obvious alteration. After 55℃ exposure, the disordered thylakoid and significant H2O2 accumulation in leaves were found in the two Chl b-less mutants, whereas in the wild type plant, less H2O2 was accumulated and the swollen thylakoid still maintained a cer- tain extent of stacking. A large extent of the changes in qP, NPQ and Fv/Fm was consistent with the Pn decreasing rate in the Chl b-less mutants during high temperature treatment as compared with the wild type. The results indicated that the Chl b-less mutants showed a tendency for higher thermosensitivity, and loss of Chl b in LHC II could lead to less thermostability of PSII structure and function. Heat damage to photosynthetic apparatus might be partially attributed to the in- ternal oxidative stress produced at severely high temperature.

关 键 词:Oryza SATIVA L  thermostability  CHLOROPHYLL b-less mutant  CHLOROPLAST ultrastructure  CHLOROPHYLL fluorescence  H2O2. 

分 类 号:S511[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象