Thermal decomposition of Pr[(C_(5)H_(8)NS_(2))_(3)(C_(12)H_(8)N_(2))]  

Thermal decomposition of Pr[(C_5H_8NS_2)_3(C_(12)H_8N_2)]

在线阅读下载全文

作  者:GUO Pengjiang,JIAO Baojuan,CHEN Sanping,HU Rongzu,GAO Shengli & SHI Qizhen Department of Chemistry,Northwest University Shaanxi Key Laboratory of Physico-lnorganic Chemistry,Xi’an 710069,China Department of Mathematics,Northwest University,Xi’an 710069,China Xi’an Modern Chemistry Research Institute,Xi’an 710065,China 

出  处:《Science China Chemistry》2005年第z1期83-87,共5页中国科学(化学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.20171036);Education Committee of Shannxi Province(No.01JK229)

摘  要:The thermal behavior of the complex Pr[(C5H8NS2)3(C12H8N2)] in a dry nitrogen flow was examined by TG-DTG analysis. The TG-DTG investigations indicated that Pr[(C5H8NS2)3-(C12H8N2)] was decomposed into Pr2S3 and deposited carbon in one step where Pr2S3 predominated in the final products. The results of non-isothermal kinetic calculations showed that the decomposition stage was the random nucleation and subsequent growth mechanism (n = 2/3), the corresponding apparent activation energy ?was 115.89 kJ·mol-1 and the pre-expo-nential constant ln[A/s] was 7.8697. The empirical kinetics model equation was proposed as/(α) =3/2(1-α)[-ln(1-α)]1/3.The X-ray powder diffraction patterns of the thermal decomposition products at 800℃under N2 atmosphere show that the product can be indexed to the cubic Pr2S3 phase. The transmission electron microscopy (TEM) of the final product reveals the particle appearance of a diameter within 40 nm. The experimental results show that the praseodymium sulfide nanocrystal can be prepared from thermal decomposition of Pr[(C5H8NS2)3(C12H8N2)].The thermal behavior of the complex Pr[(C5H8NS2)3(C12H8N2)] in a dry nitrogen flow was examined by TG-DTG analysis. The TG-DTG investigations indicated that Pr[(C5H8NS2)3-(C12H8N2)] was decomposed into Pr2S3 and deposited carbon in one step where Pr2S3 predominated in the final products. The results of non-isothermal kinetic calculations showed that the decomposition stage was the random nucleation and subsequent growth mechanism (n =nential constant In[A/s] was 7.8697. The empirical kinetics model equation was proposed as f(α) =3/2(1-α)[-ln(1-α)]1/3. The X-ray powder diffraction patterns of the thermal decomposition products at 800℃ under N2 atmosphere show that the product can be indexed to the cubic Pr2S3 phase. The transmission electron microscopy (TEM) of the final product reveals the particle appearance of a diameter within 40 nm. The experimental results show that the praseodymium sulfide nanocrystal can be prepared from thermal decomposition of Pr[(C5H8NS2)3(C12H8N2)].

关 键 词:Pr[(C5H8NS2)3(C12H8N2)]  thermal analysis  kinetics  noncrystal  characteristics. 

分 类 号:O627[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象