Approximate equivalence in von Neumann algebras  

Approximate equivalence in von Neumann algebras

在线阅读下载全文

作  者:DING Huiru Don Hadwin 

机构地区:[1]Department of Mathematics,University of New Hampshire,Durham,NH03824,USA Department of Mathematics,University of New Hampshire,Durham,NH03824,USA

出  处:《Science China Mathematics》2005年第2期239-247,共9页中国科学:数学(英文版)

摘  要:One formulation of D. Voiculescu's theorem on approximate unitary equivalence is that two unital representations π and ρ of a separable C*-algebra are approximately unitarily equivalent if and only if rank οπ = rank ορ. We study the analog when the ranges of π and ρ are contained in a von Neumann algebra R, the unitaries inducing the approximate equivalence must come from R, and 'rank' is replaced with 'R -rank' (defined as the Murray-von Neumann equivalence of the range projection).One formulation of D. Voiculescu's theorem on approximate unitary equivalence is that two unital representations π and ρ of a separable C*-algebra are approximately unitarily equivalent if and only if rank o π = rank o ρ. We study the analog when the ranges of π and ρ are contained in a von Neumann algebra R, the unitaries inducing the approximate equivalence must come from R, and "rank" is replaced with "R-rank" (defined as the Murray-von Neumann equivalence of the range projection).

关 键 词:APPROXIMATE equivalence  R-rank. 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象