Well- posedness for the 2D dissipative quasi-geostrophic equations in the Besov space  被引量:3

Well- posedness for the 2D dissipative quasi-geostrophic equations in the Besov space

在线阅读下载全文

作  者:ZHANG Zhifei 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Science China Mathematics》2005年第12期1646-1655,共10页中国科学:数学(英文版)

摘  要:In this paper, we consider the initial value problem of the 2D dissipative quasi-geostrophic equations. Existence and uniqueness of the solution global in time are proved in the homogenous Besov space Bp,∞ s p with small data when 1 /2<α≤1,2/2α-1< p<∞,sp=2/p-(2α-1). Our proof is based on a new characterization of the homogenous Besov space and Kato's method.In this paper, we consider the initial value problem of the 2D dissipative quasigeostrophic equations. Existence and uniqueness of the solution global in time are proved in the homogenous Besov space Bsp,p∞with small data when1/2 <α≤ 1, 2/2α- 1 < p <∞, sp = 2/p - (2α - 1).Our proof is based on a new characterization of the homogenous Besov space and Kato's method.

关 键 词:QUASI-GEOSTROPHIC equation well-posedness Besov space. 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象