检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China(Technological Sciences)》2004年第1期121-128,共8页中国科学(技术科学英文版)
摘 要:Based on the dislocation theory and Olson's stacking fault model, a model describing the nucleation of an hcp(ε) martensite embryo at low-angle grain boundary is proposed with the influence of external stress field taken into account. The dependences of temperature (T), shear stress (τ) and dislocation density at grain boundary on the martensite nucleation in FeMnSi based alloy, as an example, are numerically simulated. It has been shown that there exist the subcritical and critical embryos during the course of ε-phase nucleation. The free energy difference between them is just the energy barrier of embryo growth. Depending on T and τ. the characteristic embryo sizes may vary in wide ranges and decreases with increasing σ and decreasing T. The energy condition of martensitic transformation at M s and critical shear stress (τc) is discussed from the viewpoint of kinetics and thus the TEM observed result that stacking fault energy is not zero at M s temperature is reasonably explained. Besides, it is predicted that the high dislocation density at grain boundary can promote the nucleation of fcc→hcp transformation in Fe-based alloys.
关 键 词:martensitic transformation STACKING fault mechanism nucleation energy barrier temperature stress DISLOCATION density.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175