The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image  被引量:2

The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

在线阅读下载全文

作  者:ZHANG Renhua 1 ,WANG Jinfeng 1 ,ZHU Caiying 1,2 ,SUN Xiaomin 1 & ZHU Zhilin 1 1.Institute of Geographical Sciences and Natural Resources,Chinese Academy of Sciences,Beijing 100101,China 2.Institute of Surveying and Mapping,Information Engineering University of the Chinese People’s Liberation Army,Zhengzhou 450052,China 

出  处:《Science China Earth Sciences》2004年第12期1134-1146,共13页中国科学(地球科学英文版)

基  金:supported by the Knowledge Innovation Project of Institute of Geographical Sciences and Natural Resources,Chinese Academy of Sciences(Grant No.CXIOG-E01-01,04);the National Basic Research Project(Grant No.2000077900);the Key Project of the National Natural Science Foundation of China(Grant Nos.40371089 and 49890330).

摘  要:After having analyzed the requirement on the aerodynamic earth’s surface rough- ness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth’s surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR back- scattering coefficient and the earth’s surface geometric roughness and its dielectric constant re- trieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geo- metric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface’s equivalent geometric roughness—height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical to- pographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geo- metric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale transformation model to calcAfter having analyzed the requirement on the aerodynamic earth's surface rough- ness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR back- scattering coefficient and the earth's surface geometric roughness and its dielectric constant re- trieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geo- metric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness—height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical to- pographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geo- metric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale transformation model to calculate th

关 键 词:SURFACE geometric roughness  aerodynamic SURFACE roughness  SAR BACKSCATTERING model  moisture RETRIEVAL model  ROUGHNESS transformation model. 

分 类 号:P407.6[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象