基于地震属性的储层预测方法--以永安地区永3区块沙河街组二段为例  被引量:6

RESERVOIR PREDICTING METHOD BASED ON SEISMIC ATTRIBUTE ANALYSES:A CASE STUDY OF ES2x IN YONG 3 BLOCK OF YONGAN AREA

在线阅读下载全文

作  者:宫健 许淑梅[2,3] 马云[2] 于建国[4] 王金铎[4] 

机构地区:[1]中国石油大学(华东)地球资源与信息学院,东营257022 [2]中国海洋大学海洋地球科学学院,青岛266100 [3]中国海洋大学教育部海底探测重点实验室,青岛266100 [4]中石化胜利油田物探研究院,东营257001

出  处:《海洋地质与第四纪地质》2009年第6期95-102,共8页Marine Geology & Quaternary Geology

摘  要:针对永安地区永3区块沙二下段沉积微相和砂层厚度特征,提出了利用地震数据进行目标属性预测的新方法。传统的储层预测方法通过单属性简单交汇进行,预测精度较低。概率神经网络首先通过选取褶积算子解决测井参数与地震数据之间不等频现象,并利用交叉验证法检验储层预测结果的可靠性。交叉验证过程中,将测井数据分为训练数据组和验证数据组两部分,训练数据组用来进行属性转换,验证数据组用来验证结果的预测误差。对属性进行变换时,用校验误差来衡量属性变换和选取的有效性。在此基础上提取出对孔隙度敏感的5种属性。通过预测误差和校验误差计算及预测孔隙度和实际孔隙度值的相关性分析,对预测精度进行评价。最后利用PNN神经网络对永安地区永3区块沙二下段砂层进行储层物性预测,获得了目标地层的主要储层物性参数,取得了良好的预测效果。A new method is described for predicting reservoir properties using seismic data based on sedimentary micro-facies and sand thickness features of ES2x in Yong 3 block of Yong an area.Conventional reservoir predicting method is to cross-plot the target data and seismic attribute for deriving the desired relationship between the two,and has a low predictive precision.Probabilistic neural network (PNN) method uses the convolutional operator to resolve the frequency difference between seismic attribute and the ...

关 键 词:储层预测 地震属性 褶积算子 交叉验证 概率神经网络 

分 类 号:P618.13[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象