检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Shenzhen University Normal College [2]Department of Mathematics, University of Science and Technology of China
出 处:《Science China Mathematics》2003年第1期94-106,共13页中国科学:数学(英文版)
基 金:This work was supported by 973 Project, the National Natural Science Foundation of China (Grant No. 19871081); the Natural Science Foundation of Guangdong Province and Anhui Province.
摘 要:The construction of normalized biholomorphic convex mappings in the Reinhardt domain $D_p = \{ (z_1 ,z_2 , \cdots ,z_n ) \in \mathbb{C}^n :\left| {z_1 } \right|^{p_1 } + \left| {z_2 } \right|^{p_2 } + \cdots + \left| {z_n } \right|^{p_n } < 1\} $ , p j > 2, j = 1,2,?, n) of ? n is discussed. The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each such mapping f, the first k-terms of the homogeneous expansion of its j-th component f j , j = 1, 2, ?, n, depends only on z j , where k is the number that satisfies k < min {p 1, p 2,?, p n ≤ k + 1. When p1,p2, ... ,pn → ∞ , this derives the Decomposition Theorem of normalized biholomorphic convex mappings in the polydisc which was gotten by T.J. Suffridge in 1970.The construction of normalized biholomorphic convex mappings in the Reinhardt domain Dp{(z1,z2,....zn):z1 p1+z1 p2+....+zn pn <1},(pj>2,j=1,2,.....n,) of n is discussed.The authors set up a Decomposition Theorem for such mappings. As a special case, it is proved that, for each suchthis derives the Decomposition Theorem of normalized biholo morphic convex mappings in the polydisc whichwas gotten by T.J. Suffridge in 1970.
关 键 词:Reinhardt domain biholomorphic convex mapping Schwarz Lemma Schwarz Lemma
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63