检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘伟俊
机构地区:[1]Key Laboratory of Pure and Applied Mathematics, Institute of Mathematics, Peking University, Beijing 100871, China [2]Department of Mathematics, Railway Campus, Central South University, Changsha 410075, China
出 处:《Science China Mathematics》2003年第6期872-883,共12页中国科学:数学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.10171089).
摘 要:A 2 - (υ, k, 1) design D = (?,?, ?) is a system consisting of a finite set ? of υ points and a collection ? of ?-subsets of ?, called blocks, such that each 2-subset of ? is contained in precisely one block. Let G be an automorphism group of a 2-(υ, k, 1) design. Delandtsheer proved that if G is block-primitive and D is not a projective plane, then G is almost simple, that is, T ? G ? Aut(T), where T is a non-abelian simple group. In this paper, we prove that T is not isomorphic to 3 D 4(q). This paper is part of a project to classify groups and designs where the group acts primitively on the blocks of the design.A 2 - (v, k, 1) design D = (P,B) is a system consisting of a finite set P of v points and a collection B of k-subsets of P, called blocks, such that each 2-subset of P is contained in precisely one block.Let G be an automorphism group of a 2 - (v, k, 1) design. Delandtsheer proved that if G is block-primitive and D is not a projective plane, then G is almost simple, that is, T ≤ G ≤ Aut(T), where T is a non-abelian simple group. In this paper, we prove that T is not isomorphic to 3D4(q). This paper is part of a project to classify groups and designs where the group acts primitively on the blocks of the design.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43