A global solution of the Einstein-Yang-Mills equation on the conformal space  被引量:1

A global solution of the Einstein-Yang-Mills equation on the conformal space

在线阅读下载全文

作  者:陆启铿 

出  处:《Science China Mathematics》2002年第3期342-355,共14页中国科学:数学(英文版)

基  金:This work was partially supported by the Ministry of Science and Technology, the National Natural Science Foundation of China (Grant No.19631010) ; Fundamental Research Bureau of CAS.

摘  要:The method used to construct the SU(2) Yang-Mills field on a compactified Minkowski space $\overline M $ (which is equivalent to the conformal space) is generalized to construct an SU(N)(N > 2) Yang-Mills field F jk on $\overline M $ . It is proved that both F jk and the invariant metric tensor g jk of $\overline M $ satisfy the Einstein-Yang-Mills equation. The case of N → ∞ is also discussed.The method used to construct the SU(2) Yang-Mills field on a compactified Minkowski space-M(which is equivalent to the conformal space) is generalized to construct an SU(N)(N > 2) Yang-Mills fieldFjκ on M. It is proved that both Fjκ and the invariant metric tensor gjκ of M satisfy the Einstein-Yang-Mills equation. The case of N →∞ is also discussed.

关 键 词:Einstein-Yang-Mills equation su(N)-connection conformal space large N limit 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象