Linear approximation of the first eigenvalue on compact manifolds  

Linear approximation of the first eigenvalue on compact manifolds

在线阅读下载全文

作  者:陈木法 E.Scacciatelli 姚亮 

机构地区:Department of Mathematics, Beijing Normal University, Beijing 100875, China[1] Dipartimento di Matematica, Università 'La Sapienza', 00815 Rome, Italy[2]

出  处:《Science China Mathematics》2002年第4期450-461,共12页中国科学:数学(英文版)

基  金:This work was supported in part by the National Natural Science Foundation of China (Grant No. 19631060); the 973 Project, the Research Fund for the Doctoral Program of Higher Education, Consiglio Nazionale delle Ricerche(Italy) and University of Rome I

摘  要:For compact, connected Riemannian manifolds with Ricci curvature bounded below by a constant, what is the linear approximation of the first eigenvalue of Laplacian? The answer is presented with computer assisted proof and the result is optimal in certain sense.For compact, connected Riemannian manifolds with Ricci curvature bounded below by a constant, what is the linear approximation of the first eigenvalue of Laplacian? The answer is presented with computer assisted proof and the result is optimal in certain sense.

关 键 词:FIRST eigenvalue  RIEMANNIAN manifolds  LINEAR approximation. 

分 类 号:O174.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象