Strong conjugation actions induced by flags of exact Borel subalgebras  被引量:2

Strong conjugation actions induced by flags of exact Borel subalgebras

在线阅读下载全文

作  者:张跃辉 

出  处:《Science China Mathematics》2002年第6期741-748,共8页中国科学:数学(英文版)

基  金:This work was supported by the National Natural Science Foundation of China (Grant No. 10071062) ; also by the Doctorate Foundation of Hainan University and the Science and Technology Foundation of the Shanghai Jiaotong University.

摘  要:Let A be a quasi-hereditary algebra with a strong exact Borel subalgebra. It is proved that for any standard semisimple subalgebra T there exists an exact Borel subalgebra B of A such that T is a maximal semisimple subalgebra of B. It is shown that the maximal length of flags of exact Borel subalgebras of A is the difference of the radium and the rank of Grothendic group of A plus 2. The number of conjugation-classes of exact Borel subalgebras is 1 if and only if A is basic; the number is 2 if and only if A is semisimple. For all other cases, this number is 0 or no less than 3. Furthermore, it is shown that all the exact Borel subalgebras are idempotent-conjugate to each other, that is, for any exact Borel subalgebras B and C of A, there exists an idempotent e of A, and an invertible element u of A, such that eBe = u-1eCeu.Let A be a quasi-hereditary algebra with a strong exact Borel subalgebra. It is proved that for any standard semisimple subalgebra T there exists an exact Borel subalgebra B of A such that T is a maximal semisimple subalgebra of B. It is shown that the maximal length of flags of exact Borel subalgebras of A is the difference of the radium and the rank of Grothendic group of A plus 2. The number of conjugation-classes of exact Borel subalgebras is 1 if and only if A is basic; the number is 2 if and only if A is semisimple. For all other cases, this number is 0 or no less than 3. Furthermore, it is shown that all the exact Borel subalgebras are idempotent-conjugate to each other, that is, for any exact Borel subalgebras B and C of A, there exists an idempotent e of A, and an invertible element u of A, such that eBe = u-1eCeu.

关 键 词:quasi-hereditary algebra  EXACT Borel subalgebra  STRONG conjugation  IDEMPOTENT conjugate  Morita equivalence. 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象