EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE  

EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE

在线阅读下载全文

作  者:姜楠 王玉春 舒玮 王振东 

机构地区:[1]Department of Mechanics,Tianjin University,Tianjin 300072,P R China

出  处:《Applied Mathematics and Mechanics(English Edition)》2002年第9期1035-1044,共10页应用数学和力学(英文版)

基  金:Foundation items:the National Natural Science Foundation of China(10002011,19732005);the National Climbing Project(970211021)

摘  要:Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is founExperimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.

关 键 词:HEATING wall turbulence dissipation rate scaling law hierarchical structure model 

分 类 号:O357.5[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象