Strebel differentials and Hamilton sequences  

在线阅读下载全文

作  者:李忠 

机构地区:[1]Department of Mathematics,Peking University,Beijing 100871,China

出  处:《Science China Mathematics》2001年第8期969-979,共11页中国科学:数学(英文版)

基  金:the National Natural Science Foundation of China;the 973 Program Foundation of China.

摘  要:Let T(S) be a Teichmüller space of a hyperbolic Riemann surface S, viewed as a set of Teichmüller equivalence classes of Beltrami differentials on S. It is shown in this paper that for any extremal Beltrami differential μ0 at a given point τ of T(S), there is a Hamilton sequence for μ0 formed by Strebel differentials in a natural way. Especially, such a kind of Hamilton sequence possesses some special properties. As applications, some results on point shift differentials are given.Let T(S) be a Teichmaller space of a hyperbolic Riemann surface S, viewed as a set of Teichmaller equivalence classes of Beltrami differentials on S. It is shown in this paper that for any ex-tremal Beltrami differential μo at a given point T of T( S), there is a Hamilton sequence forμo formed by Strebel differentials in a natural way. Especially, such a kind of Hamilton sequence possesses some special properties. As applications, some results on point shift differentials are given.

关 键 词:Teichmüller space Hamilton sequence 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象